
To Do, or Not to Do
To Do , or Not t o Do

Explore the logic of if then else!

Seek

Discover new hands-on builds and

programming opportunities to further

your understanding of a subject matter.

The Completed Look of the Build

Completed VEX V5 Clawbot

The VEX V5 Clawbot is an extension of the VEX V5 Speedbot that can be programmed to

move around and interact with objects.

Parts Needed: Part 1

Can be built with:

 VEX V5 Classroom Starter Kit

https://www.vexrobotics.com/vexedr/products/v5-kits/276-7010.html

Parts Needed: Part 2

Build Instructions

The green icon indicates that the build needs to be flipped over (upside down).

Only one of the two sub-assemblies made in this step is used right now. The other will be used later in step 9.

Make sure your Smart Motors are oriented in the correct direction (screw holes facing the outside of the build and

the shaft hole towards the inside).

Make sure your Smart Motors are oriented in the correct direction (screw holes facing the outside of the build and

the shaft hole towards the inside).

The green icon indicates that the build needs to be rotated (180 degrees).

The blue call out shows what the orientation of the Robot Brain should be if the build were flipped right side up.

Make sure the 3 wire ports on the Robot Brain are facing the V5 Radio!

The green call outs indicate which port on the Robot Brain to plug each device into using their respective cable.

Be sure to make two assemblies in this step!

This step adds onto the two assemblies started in Step 29.

Make sure to add this to only one of the two sub-assemblies you just made.

Make sure the 12- tooth gear is installed on the right side of the claw.

Make sure that the port on the Smart Motor is facing the right side of the robot when the claw is installed (the

same side as the V5 Radio).

Build Instruction Tips

Check the Appendix for information on how to use the new Hex Nut Retainers.

Exploration

Now that you've finished the build, test what it does. Explore your build and then answer this

question in your engineering notebook.

How would the speed of the arm change if the High Strength 84 Tooth Gear in the build's

Step 33 was changed to a smaller diameter High Strength 60 Tooth Gear?

For help with this question, compare the rotational speed (RPM) of the High Strength 12

Tooth Pinion (from Step 36 of the build) to the rotational speed of the 84 Tooth Gear on the

robot by gently moving the arm up and down. Be sure to justify your answer with your

observation.

Play

Test your build, observe how it functions,

and fuel your logic and reasoning skills

through imaginative, creative play.

Decision Making-VEXcode V5
Blocks

TRUE and FALSE paths

Decision Making

At their most basic level, programs are written to accomplish simple sequences of behavior.

For example, you might want your robot to drive forward and also make some turns to reach

a destination. But, what if you want your robot to wait for the right time to start driving forward

and complete its route? That would require programming with conditional statements. You

would use a conditional statement to define what the "right time to start" is within your

project. Maybe the "right time" is after a button is pressed or when a sensor detects a specific

level and then it starts driving. When you watch the robot's behavior, it will seem like it is

deciding when to start driving but it's because you set the condition for when driving should

start.

Conditional statements are powerful programming statements that use a boolean (TRUE or

FALSE) condition. Using the same example scenario as above, you could program your

robot to repeatedly check if its brain screen is pressed and drive forward when it is. The

conditional statement in that project may read something similar to, "If the screen detects that

it is pressed (TRUE), run the driving sequence." This statement does not mention any

behavior if the condition is FALSE (the screen is not pressed) so the robot takes no action

when FALSE. Conditional statements allow you to develop projects that have the robot

behave differently depending on what it senses.

In the following example, if the Brain's screen is pressed (TRUE) the robot will drive forward.

If the Brain's screen is not pressed (FALSE) the robot will stop driving. This shows the robot

only driving forward when the Brain's screen is pressed, otherwise the robot stops.

Programming with Conditionals -
VEXcode V5 Blocks

Hardware/Software Required:

Amount Hardware/Software

1 VEX V5 Classroom Starter Kit (with up-to-date firmware)

1 VEXcode V5 Blocks (latest version, Windows, MacOS,
Chromebook)

1 Engineering Notebook

1 Clawbot (Drivetrain 2-motor, No Gyro) Template

The Clawbot is ready to make decisions!

This activity will give you the tools to program your robot with conditional behaviors.

The if then and if then else blocks are the main focus within the activity but Operators and

Sensing blocks are also used.

You can use the Help information inside of VEXcode V5 Blocks to learn about the blocks. For

guidance in using the Help feature, see the Using Help tutorial.

https://www.vexrobotics.com/vexedr/products/v5-kits/276-7010.html
https://kb.vex.com/hc/en-us/articles/360035591972-How-to-Check-the-V5-Robot-Brain-Status-USB-Cable-VEXcode-V5-Blocks
https://www.vexrobotics.com/vexcode
https://kb.vex.com/hc/en-us/articles/360035953791-How-to-Install-on-Windows-VEXcode-V5-Blocks
https://kb.vex.com/hc/en-us/articles/360035591892-How-to-Install-on-macOS-VEXcode-V5-Blocks
https://kb.vex.com/hc/en-us/articles/360035954211-How-to-Install-on-a-Chromebook-VEXcode-V5-Blocks
https://www.vexrobotics.com/276-3023.html

1. Let's start with an understanding of conditional statements.

Before you begin programming with conditionals, first watch the If-Then-Else tutorial video

below. It can also be found as a Tutorial video in VEXcode V5 Blocks.

2. Let's start programming with conditional statements.

 Open the Clawbot (Drivetrain 2-motor, No Gyro) template example project.

Build the project below.

Do the following in your engineering notebook:

 Explain what the project has the Clawbot do. You will need to explain more than the fact

that it creates a stop button. Explain which blocks make the Clawbot do what.

Write a one sentence summary that captures what the project does.

Test to see if your prediction of what the project has the Clawbot do is correct.

Save and download the project as Creating a Stop Button to Slot 1 on the Clawbot, and

then run it.

For help downloading a project, see the tutorial in VEXcode V5 Blocks that explains how

to Download and Run a Project.

Check your explanations of the project and add notes to correct them as needed.

3. Understanding the wait until block.

Notice that if the Brain's screen is pressed, the flow of the project moves so quickly that the

project will move to the next block, which is the stop driving block.

https://www.youtube.com/watch?v=uHnZ1Qj5QqM&list=PLvvcc7S26YEgjnEMSjmKd5pxswwWCwN1n&index=5&t=0s

Thus, the project needs a wait until block that tells the robot to remain stopped until the

Brain's screen is released. Otherwise, the forever block would cause the project to begin

again with the drive block.

The wait until block is necessary because of the speed of the project's flow. If it was not

there, the project would move to the next block before the robot ever had time to respond.

4. Change the project.

Our next step is changing the if then block to an if then else block.

 Start by saving Creating a Stop Button as the new project, StopOrDrive.

If you need help saving a project, see the Naming and Saving Your Project tutorial in

VEXcode V5 Blocks.

Then build the StopOrDrive project shown below.

 Download StopOrDrive to Slot 2 on your Clawbot.

For help downloading a project, see the tutorial in VEXcode V5 Blocks that explains how

to Download and Run a Project.

Test Creating a Stop Button (Slot 1) and then test StopOrDrive (Slot 2) and compare

them to see if there are any difference in the robot's behavior. Note any differences in your

engineering notebook.

The two projects have the Clawbot behave the same way. The only difference is the use of

the if then else block in the StopOrDrive project.

Using the if then else block will allow you to add additional buttons to the screen in upcoming

activities.

https://www.youtube.com/watch?v=uHnZ1Qj5QqM&list=PLvvcc7S26YEgjnEMSjmKd5pxswwWCwN1n&index=5&t=0s

Adding a Second Button to the
Brain's Screen-VEXcode V5 Blocks

Hardware/Software Required:

Amount Hardware/Software

1 VEX V5 Classroom Starter Kit (with up-to-date firmware)

1 VEXcode V5 Blocks (latest version, Windows, MacOS,
Chromebook)

1 Engineering Notebook

1 StopOrDrive project from the previous Play page

The brain's screen can have more than one button.

This activity will let you program the robot to drive forward and turn left or right depending on

which side of the brain's screen is pressed.

The three additional types of blocks that you will need during this activity are the following:

https://www.vexrobotics.com/vexedr/products/v5-kits/276-7010.html
https://kb.vex.com/hc/en-us/articles/360035591972-How-to-Check-the-V5-Robot-Brain-Status-USB-Cable-VEXcode-V5-Blocks
https://www.vexrobotics.com/vexcode
https://kb.vex.com/hc/en-us/articles/360035953791-How-to-Install-on-Windows-VEXcode-V5-Blocks
https://kb.vex.com/hc/en-us/articles/360035591892-How-to-Install-on-macOS-VEXcode-V5-Blocks
https://kb.vex.com/hc/en-us/articles/360035954211-How-to-Install-on-a-Chromebook-VEXcode-V5-Blocks
https://www.vexrobotics.com/276-3023.html

You can use the Help information inside of VEXcode V5 Blocks to learn about the blocks. For

guidance in using the Help feature, see the Using Help tutorial.

1. Let's start by reviewing the StopOrDrive project.

The StopOrDrive project had the Clawbot stop if the screen was pressed, or else it had it

drive forward.

The entire screen was one big button but in this next project, we want half the screen to be

one button and the other half to be the other.

https://www.youtube.com/watch?v=akif-j_RFTM&list=PLvvcc7S26YEiWk5P24qwHdM655Pit6dh5&index=5&t=0s

In order to split the screen into two buttons, we need to understand more about the layout of

the screen.

 Notice that the columns increase in number from left to right. The number of columns is 48

and the screen is 480 pixels wide.

 Write down in your engineering notebook that the x-value on the screen is equal to the

number of pixels measured from left to right.

 What is the x-value of the center of the screen? For this activity, you can focus on the x-

axis alone because you only need a left and right button.

2. Programming for two buttons.

 Save StopOrDrive as the LeftOrRight project.

 Remember, if you need help opening, naming, or saving projects, watch the Tutorials in

VEXcode V5 Blocks.

 Build the project below. It will have the Clawbot turn left or right when the screen is

pressed, depending on the side it is pressed on.

 Let's review what this project does.

It keeps checking if the screen is pressed. If the screen isn't pressed it drives forward but if

it is, it checks where the screen is pressed.

If the press was on the left side (less than 240), it turns left. Otherwise, it turns right. We

don't need another condition for when the x-value is greater than 240 because if it isn't

less than 240 (turn left), it must be greater (turn right). We only have two buttons to worry

about.

The wait until Control blocks after each turn have the project wait until the screen is no

longer being pressed before continuing.

 Now that the project is done, download and run it to test how it works.

 For help, watch the Download and Run a Project tutorial video in VEXcode V5 Blocks.

 Take notes in your engineering notebook about how the buttons control the movements of

the Clawbot.

3. Adjust the project for a better User Experience.

When pressing the screen's buttons from behind the Clawbot as it drove forward, you

pressed on the right side of the screen to turn left and on the left side of the screen to turn

right. That is not a good User Experience. A User Experience is how well a user can interact

with a User Interface to control a computer system. There is more information about User

Interfaces in the Apply section of this lab.

In this case, we need to improve the User Interface in order to improve the User Experience.

 Review the LeftOrRight project and revise it so that when the user presses the buttons

from behind the Clawbot, the robot turns right when the user presses the left side of the

screen. Or else, the Clawbot turns left.

 Plan, test, and iterate on this project in your engineering notebook so that the project

makes the Clawbot turn toward the side of the screen that the user is pressing from

behind the Clawbot.

Decision Making-VEXcode V5 Text

TRUE and FALSE paths

Decision Making

At their most basic level, programs are written to accomplish simple sequences of behavior.

For example, you might want your robot to drive forward and also make some turns to reach

a destination. But, what if you want your robot to wait for the right time to start driving forward

and complete its route? That would require programming with conditional statements. You

would use a conditional statement to define what the "right time to start" is within your

project. Maybe the "right time" is after a button is pressed or when a sensor detects a specific

level and then it starts driving. When you watch the robot's behavior, it will seem like it is

deciding when to start driving but it's because you set the condition for when driving should

start.

Conditional statements are powerful programming statements that use a boolean (TRUE or

FALSE) condition. Using the same example scenario as above, you could program your

robot to repeatedly check if its brain screen is pressed and drive forward when it is. The

conditional statement in that project may read something similar to, "If the screen detects that

it is pressed (TRUE), run the driving sequence." This statement does not mention any

behavior if the condition is FALSE (the screen is not pressed) so the robot takes no action

when FALSE. Conditional statements allow you to develop projects that have the robot

behave differently depending on what it senses. For more information on Boolean Logic, click

here.

In the following example, if the Brain's screen is pressed (TRUE) the robot will drive forward.

If the Brain's screen is not pressed (FALSE) the robot will stop driving. This shows the robot

only driving forward when the Brain's screen is pressed, otherwise the robot stops.

https://kb.vex.com/hc/en-us/articles/360037384792-Booleans-Programming

Programming with Conditionals -
VEXcode V5 Text

Hardware/Software Required:

Amount Hardware/Software

1 VEX V5 Classroom Starter Kit (with up-to-date firmware)

1 VEXcode V5 Text (latest version, Windows, MacOS)

1 Engineering Notebook

1 Clawbot (Drivetrain 2-motor, No Gyro) Template

The Clawbot is ready to make decisions!

During this exploration you can access help right in the VEXcode V5 Text program.

1. Let's start with an understanding of conditional statements.

Before you begin programming with conditionals, read the VEX Knowledge Base Article

explaining If Then Else Statements. The article can be found here.For a list of operators to

use in the If Then Else statements, read the VEX Knowledge Base Article explaining

Booleans. This article can be found here.

https://www.vexrobotics.com/vexedr/products/v5-kits/276-7010.html
https://kb.vex.com/hc/en-us/articles/360035591972-How-to-Check-the-V5-Robot-Brain-Status-USB-Cable-VEXcode-V5-Blocks
https://www.vexrobotics.com/vexcode
https://kb.vex.com/hc/en-us/articles/360035935052-Windows-Install
https://kb.vex.com/hc/en-us/articles/360036286751-MAC-Install
https://www.vexrobotics.com/276-3023.html
https://kb.vex.com/hc/en-us/articles/360035593652-If-Else-Statement-Tutorials
https://kb.vex.com/hc/en-us/articles/360037384792-Booleans-Programming

2. Let's start programming with conditional statements.

 Open the Clawbot (Drivetrain 2-motor, No Gyro) template example project.

 Build the project below.

Do the following in your engineering notebook:

Explain what the project has the Clawbot do. You will need to explain more than the fact

that it creates a stop button. Explain which instructions make the Clawbot do what.

Write a one sentence summary that captures what the project does.

Test to see if your prediction of what the project has the Clawbot do is correct.

Save and download the project as CreatingAStopButton to Slot 1 on the Clawbot, and

then run it.

For help downloading a project, see the tutorial in VEXcode V5 Text that explains how to

Download and Run a Project.

Check your explanations of the project and add notes to correct them as needed.

https://kb.vex.com/hc/en-us/articles/360036283471-Download-and-Run-Tutorials

3. Understanding the wait until statement.

Notice that if the Brain's screen is pressed, the flow of the project moves quickly and the

project will move to the next instruction, which is the Drivetrain.stop() instruction.

Thus, the project needs a waitUntil() instruction that tells the robot to remain stopped until the

Brain's screen is released. Otherwise, the forever statement would cause the project to begin

again.

The waitUntil() instruction is necessary because of the speed of the project's flow. If it was

not there, the project would move to the next instruction before the robot ever had time to

respond.

4. Change the project.

Our next step is changing the if then statement to an if then else statement.

 Start by saving CreatingAStopButton as the new project, StopOrDrive.

If you need help saving a project, click here.

Then build the StopOrDrive project shown below.

Download StopOrDrive to Slot 2 on your Clawbot.

https://kb.vex.com/hc/en-us/articles/360037526792-Save-Project-Tutorials

 For help downloading a project, see the tutorial in VEXcode V5 Text that explains how to

Download and Run a Project.

Test CreatingAStopButton (Slot 1) and then test StopOrDrive (Slot 2) and compare

them to see if there are any difference in the robot's behavior. Note any differences in your

engineering notebook

The two projects have the Clawbot behave the same way. The only difference is the use of

the if then else statement in the StopOrDrive project.

Using the if then else statement will allow you to add additional buttons to the screen in

upcoming activities.

https://kb.vex.com/hc/en-us/articles/360036283471-Download-and-Run-Tutorials

Adding a Second Button to the
Brain's Screen-VEXcode V5 Text

Hardware/Software Required:

Amount Hardware/Software

1 VEX V5 Classroom Starter Kit (with up-to-date firmware)

1 VEXcode V5 Text (latest version, Windows, MacOS)

1 Engineering Notebook

1 StopOrDrive project from the previous Play page

The brain's screen can have more than one button.

This activity will let you program the robot to drive forward and turn left or right depending on

which side of the brain's screen is pressed.

The three additional types of instructions that you will need during this activity are the

following:

 Drivetrain.turn(right);

number < 50

Brain.Screen.xPosition();

You can use the Help information inside of VEXcode V5 Text to learn about the instructions.

1. Let's start by reviewing the StopOrDrive project.

The StopOrDrive project had the Clawbot stop if the screen was pressed, or else it had it

drive forward.

https://www.vexrobotics.com/vexedr/products/v5-kits/276-7010.html
https://kb.vex.com/hc/en-us/articles/360035591972-How-to-Check-the-V5-Robot-Brain-Status-USB-Cable-VEXcode-V5-Blocks
https://www.vexrobotics.com/vexcode-download
https://link.vex.com/vexcode-v5text-windows
https://link.vex.com/vexcode-v5text-mac
https://www.vexrobotics.com/276-3023.html

The entire screen was one big button but in this next project, we want half the screen to be

one button and the other half to be the other.

In order to split the screen into two buttons, we need to understand more about the layout of

the screen.

 Notice that the columns increase in number from left to right. The number of columns is 48

and the screen is 480 pixels wide.

 Write down in your engineering notebook that the x-value on the screen is equal to the

number of pixels measured from left to right.

 What is the x-value of the center of the screen? For this activity, you can focus on the x-

axis alone because you only need a left and right button.

2. Programming for two buttons.

 Save StopOrDrive as the LeftOrRight project.

 Build the project below. It will have the Clawbot turn left or right when the screen is

pressed, depending on the side it is pressed on.

Let's review what this project does.

It keeps checking if the screen is pressed. If the screen isn't pressed it drives forward but if

it is, it checks where the screen is pressed.

If the press was on the left side (less than 240), it turns left. Otherwise, it turns right. We

don't need another condition for when the x-value is greater than 240 because if it isn't

less than 240 (turn left), it must be greater (turn right). We only have two buttons to worry

about.

The wait until Control instructions after each turn have the project wait until the screen is

no longer being pressed before continuing.

 Now that the project is done, download and run it to test how it works.

Take notes in your engineering notebook about how the buttons control the movements of

the Clawbot.

3. Adjust the project for a better User Experience.

When pressing the screen's buttons from behind the Clawbot as it drove forward, you

pressed on the right side of the screen to turn left and on the left side of the screen to turn

right. That is not a good User Experience. A User Experience is how well a user can interact

with a User Interface to control a computer system. There is more information about User

Interfaces in the Apply section of this lab.

In this case, we need to improve the User Interface in order to improve the User Experience.

Review the LeftOrRight project and revise it so that when the user presses the buttons

from behind the Clawbot, the robot turns right when the user presses the left side of the

screen. Or else, the Clawbot turns left.

Plan, test, and iterate on this project in your engineering notebook so that the project

makes the Clawbot turn toward the side of the screen that the user is pressing from

behind the Clawbot.

Apply

Become a 21st century problem solver

by applying the core skills and concepts

you learned to other problems.

User Interfaces

Interacting with Computer Systems

The buttons you created on the brain's screen are the beginning of a basic Graphical User

Interface (GUI). There are other types of User Interfaces (UIs), but we will focus on GUIs

because they are the type we use most.

A UI is a space that allows the user to interact with a computer system (or machine). When

you programmed the buttons on the brain's screen, you gave users a way to interact with the

Clawbot so they could make it stop or turn left or right. When you interact with a touchscreen

on one of your devices (tablet, smartphone, smartwatch), those screens are often the only

interface you have. Maybe your device has volume or power buttons as well but you mainly

interact with the screen.

After programming your own buttons on the brain's screen, you should have a better sense

of how a touchscreen might be programmed to detect which icon or button you want to

select. Of course, there are more sophisticated ways of programming those features that

professionals use instead of hard programming exactly where a button should be.

Professional programs for GUIs are more adaptive to moving buttons and icons and other

variables, but they share some of the same underlying principles.

Those principles form the foundation of the User Experience (UX) while using a UI. The User

Experience is how well the interface lets me, as the user, do what I'm trying to do. Is the

interface working as I expect it to? Is it responsive to what I'm trying to communicate with my

presses? Is it organized well, or can buttons/icons/menus be moved around to make it

easier? What does the interface look like in general? Is it pleasing to look at and does it

make me want to use it more often? When a UI is still being developed and undergoing

iterations, the developers collect data on what works as planned and what needs to be fixed

or enhanced. That data then informs the next round of iterative design. Some of the UX

changes recommended occur before the release of the device. But, the device might also be

sold as is and those changes are made later before the next version is offered to the public

consumer.

The Controller as a User Interface

Students react to a successful Driver Controlled match.

Remotely Controlling the Robot

We most often use remote controls to interact with our televisions. We press buttons that

make the television display a channel or information/access screen that we want.

Technically, your television's remote control is a UI. However, it is a much less sophisticated

UI than the one that your smartphone uses. Because it's less sophisticated, it is usually

electrical engineers, not UI engineers, that design television remotes. Because of their

training, electrical engineers look at the problem of adding new features to a remote control

as a circuit problem: how to add a new button to control some new feature on your television.

They don't consider the usability of the new button in relation to the other buttons.

Programming your V5 Controller is much more sophisticated. During the Driver Controlled

matches of a competition, you want your driver/team to have as many advantages as

possible. So you can program the buttons and joysticks to do more than one simple

behavior. And, you can program them to do complex behaviors when buttons/joysticks are

used in combination-similar to how some gaming controllers work. As the programmer of

your Controller, you consider-like a UI Engineer would-which buttons to use in combination

by figuring out how your fingers and hands would need to be placed in order to reach all of

the buttons involved. You wouldn't want the driver controlling your robot to end up with

cramps in her hands.

The programming for your V5 Controller has it check repeatedly on which button(s) is being

pressed so that they can have the robot perform the appropriate behavior(s). Consider that

there could be very many nested conditional statements within the Controller's project when

using combinations of presses, like the following example: If the A button is pressed and the

B button is pressed, do this behavior. If the A button is pressed, the B button is pressed, and

the left joystick is pushed downward, do this behavior. Else (only A is pressed), do this

behavior. Consider how many more combinations of conditionals are needed to take into

account all of the other buttons and their combinations that are available on the Controller.

Of course, as you program more complex behaviors into the functioning of the Controller, the

project gets closer to having the robot be autonomous. So a competition team needs to

figure out which are the best behaviors to program into their Controllers as complex

sequences and which behaviors are best left decomposed into multiple parts so that the

Controller lets the driver (user) have more control over the speed and accuracy of the

behavior.

Rethink

Is there a more efficient way to come to

the same conclusion? Take what you’ve

learned and try to improve it.

Prepare for the User Interface
Challenge

An Interface to Grab and Lift!

In the User Interface Challenge, you need to program your robot so that a user can use

buttons on the brain's screen to pick up a variety of objects.

Your Brain's screen will need to have four buttons:

 A button for opening the claw

A button for closing the claw

A button for raising the arm

A button for lowering the arm

To complete the challenge you will need:

A Clawbot

Objects to be picked up: an empty can or water bottle, a VEX cube, an unused piece from

the VEX kit, or anything else that your teacher can provide

Design, Develop, and Iterate on
your Project-Blocks

Answer the following questions in your engineering notebook as you design your project.

 What do you want to program the robot to do? Explain with details.

How many conditions will your project need to check in the if then else blocks?

Remember that the LeftOrRight project only needed one more condition after a press of

the screen was detected.

This project uses four buttons: left upper, left lower, right upper, and right lower. How

many conditions will the project need to check after detecting that the screen has been

pressed? Explain with details.

Hint: The project can check if the screen is pressed by using an if then block. Then you

will need to nest three if then else blocks within the if then block, with some nested inside

of each other.

Follow the steps below as you create your project:

Plan out the conditions that your project needs to check using drawings and pseudocode.

Also, plan for the part of your project that will draw the four buttons on the screen. Decide

on their colors.

Use the pseudocode you created to develop your project.

Test your project often and iterate on it using what you learned from your testing.

What could you add to your project to better control the Claw and Arm Motors? Explain

with details.

Share your final project with your teacher.

If you're having trouble getting started, review the following in VEXcode V5 Blocks:

 Previous versions of your "Creating a Stop
Button" project

 If then else tutorial

 Previous versions of your project (LeftOrRight)

 The Help feature to learn more about the

blocks

The User Interface Challenge-
VEXcode V5 Blocks

The User Interface Challenge

In the User Interface Challenge, you will program the Clawbot so that a user can press the

brain's screen to control the arm and claw motors. Then the four buttons on the screen will

be used to pick up and replace a variety of ten objects. This challenge does not require the

Clawbot to drive or turn. The objects are picked up and then replaced to the same spot on

the table or floor.

Rules:

 Each of the four buttons must only do one of the four actions: open the claw, close the

claw, lift the arm, or lower the arm.

 Using the Controller is not allowed.

 Each Clawbot will need to lift and replace as many objects as possible within one minute

and without dropping them. Lifting and replacing one object at a time is recommended.

o The one-minute round ends at the 1-minute mark or if any object is dropped - even if

the round is only a few seconds in. Dropping an object disqualifies the team from the

full minute of the round but any points earned prior to the drop are counted.

 If all of the provided objects have been lifted before the one-minute round is over, objects

can be re-used until time is called.

 The object needs to be lifted higher than the arm's motor before it is replaced on the table.

 Each object successfully grabbed and lifted up then down and replaced is worth one point.

 Between rounds, roles can be changed but only one user per Clawbot can play each

round.

 The group with the most points at the end of all of the rounds, wins!

Roles in the Challenge:

 There should only be one user (the lifter) lifting the objects during each round but groups

can switch users between rounds.

 There should be a designated scorekeeper who tallies how many objects each Clawbot is

able to lift successfully. Each object successfully replaced is worth one point. After an

object is dropped, the Clawbot's turn is over. Multiple rounds can be played. A scoring

table is included here but rows can be added for additional groups and rounds. Each

group can use their own scoring table or everyone can record on the same one. If multiple

groups are using the same score table, write each groups' Clawbot ID or group name in

the second column. Also, the scorekeeper should combine the points from each round at

the end of the User Interface Challenge for a total score.

 There should be a person assigned to switch objects out from the table: the switcher.

Because the Clawbot is not turning or driving, the lifted object will need to be removed and

replaced with a new object after each attempt.

 There should be a person assigned to keep track of the time: the timekeeper. Each round

is one minute.

 The teacher should provide the objects approved for this challenge prior to starting.

Design, Develop, and Iterate on
your Project-Text

Answer the following questions in your engineering notebook as you design your project.

 What do you want to program the robot to do? Explain with details.

How many conditions will your project need to check in the if then else statement?

Remember that the LeftOrRight project only needed one more condition after a press of

the screen was detected.

This project uses four buttons: left upper, left lower, right upper, and right lower. How

many conditions will the project need to check after detecting that the screen has been

pressed? Explain with details.

Hint: The project can check if the screen is pressed by using an if then statement. Then

you will need to nest three if then else statements within the if then statement, with some

nested inside of each other.

Follow the steps below as you create your project:

Plan out the conditions that your project needs to check using drawings and pseudocode.

Also, plan for the part of your project that will draw the four buttons on the screen. Decide

on their colors.

Use the pseudocode you created to develop your project.

Test your project often and iterate on it using what you learned from your testing.

What could you add to your project to better control the Claw and Arm Motors? Explain

with details.

Share your final project with your teacher.

If you're having trouble getting started, review the following in VEXcode V5 Text:

 Previous versions of your "Creating a Stop

Button" project

 If then else tutorial

 Previous versions of your project

(LeftOrRight)

The User Interface Challenge-
VEXcode V5 Text

The User Interface Challenge

In the User Interface Challenge, you will program the Clawbot so that a user can press the

brain's screen to control the arm and claw motors. Then the four buttons on the screen will

be used to pick up and replace a variety of ten objects. This challenge does not require the

Clawbot to drive or turn. The objects are picked up and then replaced to the same spot on

the table or floor.

Rules:

 Each of the four buttons must only do one of the four actions: open the claw, close the

claw, lift the arm, or lower the arm.

 Using the Controller is not allowed.

 Each Clawbot will need to lift and replace as many objects as possible within one minute

and without dropping them. Lifting and replacing one object at a time is recommended.

o The one-minute round ends at the 1-minute mark or if any object is dropped - even if

the round is only a few seconds in. Dropping an object disqualifies the team from the

full minute of the round but any points earned prior to the drop are counted.

 If all of the provided objects have been lifted before the one-minute round is over, objects

can be re-used until time is called.

 The object needs to be lifted higher than the arm's motor before it is replaced on the table.

 Each object successfully grabbed and lifted up then down and replaced is worth one point.

 Between rounds, roles can be changed but only one user per Clawbot can play each

round.

 The group with the most points at the end of all of the rounds, wins!

Roles in the Challenge:

 There should only be one user (the lifter) lifting the objects during each round but groups

can switch users between rounds.

 There should be a designated scorekeeper who tallies how many objects each Clawbot is

able to lift successfully. Each object successfully replaced is worth one point. After an

object is dropped, the Clawbot's turn is over. Multiple rounds can be played. A scoring

table is included here but rows can be added for additional groups and rounds. Each

group can use their own scoring table or everyone can record on the same one. If multiple

groups are using the same score table, write each groups' Clawbot ID or group name in

the second column. Also, the scorekeeper should combine the points from each round at

the end of the User Interface Challenge for a total score.

 There should be a person assigned to switch objects out from the table: the switcher.

Because the Clawbot is not turning or driving, the lifted object will need to be removed and

replaced with a new object after each attempt.

 There should be a person assigned to keep track of the time: the timekeeper. Each round

is one minute.

 The teacher should provide the objects approved for this challenge prior to starting.

Know

Understand the core concepts and how

to apply them to different situations.

This review process will fuel motivation

to learn.

Review-VEXcode V5 Blocks

1. True or False: Blocks inside of the forever loop block are run in order, from

top to bottom.

o True

o False

2. True or False: When the project reads an if then else block, if the first

condition is met it does not proceed to the else condition.

o True

o False

3. Conditional statements are powerful programming statements that you can

use to make decisions based on the outcome of a________ condition.

o boolean

o holding

o motor

o temperate

4. For the following pseudocode, which block would best be used to program

the last line?

Keeps checking if screen is pressed

When screen is pressed, check whether it is pressed on the right or left

If it was pressed on the left (less than 240), turn left

Waits until screen is no longer pressed before continuing

If press was not on the left, turn right

5. True or False: A conditional statement allows a project to run different

blocks depending on whether some condition(s) is met.

o True

o False

6. Which of the following is the term used for how well the interface lets me,

as the user, do what I'm trying to do?

o Graphical User Interface (GUI)

o User Interface (UI)

o User Experience (UX)

o None of these answers are correct.

7. True or False: Developers of User Interfaces (UIs) already know how to

optimize the User Experience and therefore do not need to collect data from

users.

o True

o False

Review-VEXcode V5 Text

8. True or False: Instructions inside of the forever loop structure are run in

order, from top to bottom.

o True

o False

9. True or False: When the project reads an if then else instruction, if the first

condition is met it does not proceed to the else condition.

o True

o False

10. Conditional statements are powerful programming statements that you can

use to make decisions based on the outcome of a________ condition.

o boolean

o holding

o motor

o temperate

11. For the following pseudocode, which insruction would best be used to

program the last line?

Keeps checking if screen is pressed

When screen is pressed, check whether it is pressed on the right or left

If it was pressed on the left (less than 240), turn left

Waits until screen is no longer pressed before continuing

If press was not on the left, turn right

12. True or False: A conditional statement allows a project to run different

instructions depending on whether some condition(s) is met.

o True

o False

13. Which of the following is the term used for how well the interface lets me,

as the user, do what I'm trying to do?

o Graphical User Interface (GUI)

o User Interface (UI)

o User Experience (UX)

o None of these answers are correct.

14. True or False: Developers of User Interfaces (UIs) already know how to

optimize the User Experience and therefore do not need to collect data from

users.

o True

o False

Appendix

Additional information, resources, and materials.

Using the 1 Post Hex Nut Retainer
w/ Bearing Flat

1 Post Hex Nut Retainer w/ Bearing Flat

Using the 1 Post Hex Nut Retainer w/ Bearing Flat

The 1 Post Hex Nut Retainer w/ Bearing Flat allows shafts to spin smoothly through holes in

structural components. When mounted, it provides two points of contact on structural

components for stability. One end of the retainer contains a post sized to securely fit in the

square hole of a structural component. The center hole of the retainer is sized and slotted to

securely fit a hex nut, allowing a 8-32 screw to easily be tightened without the need for a

wrench or pliers. The hole on the end of the Retainer is intended for shafts or screws to pass

through.

To make use of the retainer:

 Align it on a VEX structural component such that the end hole is in the desired location,

and the center and end sections are also backed by the structural component.

 Insert the square post extruding from the retainer into the structural component to help

keep it in place.

 Insert a hex nut into the center section of the retainer so that it is flush with the rest of the

component.

 Align any additional structural components to the back of the main structural component, if

applicable.

 Use an 8-32 screw of appropriate length to secure the structural component(s) to the

retainer through the center hole and hex nut.

Using the 4 Post Hex Nut Retainer

4 Post Hex Nut Retainer

Using the 4 Post Hex Nut Retainer

The 4 Post Hex Nut Retainer provides five points of contact for creating a strong connection

between two structural components using one screw and nut. Each corner of the retainer

contains a post sized to securely fit in a square hole within a structural component. The

center of the retainer is sized and slotted to securely fit a hex nut, allowing a 8-32 screw to

easily be tightened without the need for a wrench or pliers.

To make use of the retainer:

 Align it on a VEX structural component such that the center hole is in the desired location,

and each corner is also backed by the structural component.

 Insert the square posts extruding from the retainer into the structural component to help

keep it in place.

 Insert a hex nut into the center section of the retainer so that it is flush with the rest of the

component.

 Align any additional structural components to the back of the main structural component, if

applicable.

 Use an 8-32 screw of appropriate length to secure the structural component(s) to the

retainer through the center hole and hex nut.

Using the 1 Post Hex Nut Retainer

1 Post Hex Nut Retainer

Using the 1 Post Hex Nut Retainer

The 1 Post Hex Nut Retainer provides two points of contact for connecting a structural

component to another piece using one screw and nut. One end of the retainer contains a

post sized to securely fit in the square hole of a structural component. The other end of the

retainer is sized and slotted to securely fit a hex nut, allowing a 8-32 screw to easily be

tightened without the need for a wrench or pliers.

To make use of the retainer:

 Align it on a VEX structural component such that both ends are backed by the structural

component and positioned to secure the second piece.

 Insert the square post extruding from the retainer into the structural component to help

keep it in place.

 If the retainer is being used to secure two structural components, insert a hex nut into the

other end of the retainer so that it is flush with the rest of the component. If used to secure

a different type of component, such as a standoff, it may be appropriate to insert the screw

through this side.

 Align any additional components to the back of the main structural component, if

applicable.

 If the retainer is being used to connect two structural components, use an 8-32 screw of

appropriate length to secure the structural components through the hole and hex nut. If

used to connect a different type of component, such as a standoff, secure it directly or with

a hex nut.

Engineering Notebooks

Alexander Graham Bell's notebook entry from a successful experiment with his first telephone

An Engineering Notebook Documents your Work

Not only do you use an engineering notebook to organize and document your work, it is also

a place to reflect on activities and projects. When working in a team, each team member will

maintain their own journal to help with collaboration.

Your engineering notebook should have the following:

 An entry for each day or session that you worked on the solution

 Entries that are chronological, with each entry dated

 Clear, neat, and concise writing and organization

 Labels so that a reader understands all of your notes and how they fit into your iterative

design process

An entry might include:

 Brainstorming ideas

 Sketches or pictures of prototypes

 Pseudocode and flowcharts for planning

 Any worked calculations or algorithms used

 Answers to guiding questions

 Notes about observations and/or conducted tests

 Notes about and reflections on your different iterations

Popups

Creating a Stop Button vs.
StopOrDrive-VEXcode V5 Blocks

Pseudocode for the User Interface
Challenge

Example Solution to User Interface
Challenge-VEXcode V5 Blocks

Creating a Stop Button vs.
StopOrDrive-VEXcode V5 Text

Example Solution to User Interface
Challenge-VEXcode V5 Text

